1. Bluetooth
Bluetooth เป็นเทคโนโลียีที่เกิดขึ้นจาก Bluetooth Special Internet Group (www.bluetooth.com) ซึ่งก่อตั้งขึ้นเมื่อปี 1998 โดยบริษัทชั้นนำอย่าง Intel, Nokia และ Toshiba เทคโนโลยีนี้มีวัตถุประสงค์เพื่อการส่งข้อมูลระยะทางสั้น ซึ่งมีรัศมีประมาณ 10 เมตรโดยที่อุปกรณ์ต่อพ่วงจะต้องมีตัวส่งสัญญาณBluetooth อยู่ข้างใน เพื่อใช้ส่งสัญญาณโดยจะใช้คลื่นวิทยุเป็น ตัวส่งสัญญาณ แต่หากระยะทางการส่งมีสิ่งกีดขวางก็จะไม่สามารถส่งสัญญาณไปหาตัวอุปกรณ์หลักได้ ดังนั้น เทคโนโลยีนี้จึงเหมาะจะใช้กับอุปกรณ์ที่จำเป็นต้องมีอุปกรณ์ต่อพ่วงที่ใช้ทำงานร่วมกันในระยะทางใกล้ เทคโนโลยีนี้จะมีประโยชน์มากหากนำมาใช้แทนที่อุปกรณ์ที่มีสายส่งสัญญาณ เพราะจะช่วยลดปัญหาของสายส่งสัญญาณเสียหาย หรือการจัดเก็บสายส่งสัญญาณ ซึ่งอาจเกะกะมาก และ นำออกมาใช้ยากลำบาก
เทคโนโลยี Bluetooth สามารถนำมาใช้ให้เข้ากับชีวิตประจำวันได้เป็นอย่างดี และยังเพิ่มความสะดวกในการใช้งานกับอุปกรณ์ต่างๆ และนอกเหนือจากที่กล่าวไป Bluetooth ยังถูกพัฒนามาใช้งานกับอุปกรณ์อื่นๆ อีกด้วย ทั้งหูฟังสเตอริโอ เครื่องเล่นซีดี รีโมทวิทยุ แม้กระทั่งในรถยนต์ ซึ่งปัจจุบันได้มีการนำเทคโนโลยี Bluetooth ไปใช้กันแล้ว ทั้งชุด Handsfree, หรือ รีโมทเปิด-ปิดประตู หรือระบบ Keyless แต่เราไม่ต้องกดปุ่มที่กุญแจอีกต่อไป เพียงแค่อยู่ในระยะการทำงาน ประตูก็จะเปิดล็อคให้ทันที เมื่อการเชื่อมต่อระหว่างตัวรถกับกุญแจขาดจากกัน ก็จะล็อคให้เองอัตโนมัติ (รถบางรุ่นเริ่มมีใช้กันแล้ว Mercedes-Benz SLR)
2. IEEE 802.11
มาตรฐาน IEEE 802.11 คือ มาตรฐานของการรับ – ส่งข้อมูลโดยอาศัยคลื่นความถี่ เป็น เจเนอเรชันต่อไปของ Wi-Fi
มาตรฐาน IEEE 802.11a
มาตรฐาน IEEE 802.11a เป็นมาตรฐานแรกที่ได้รับการประกาศออกมา โดยอาศัยการส่งข้อมูลในช่วงคลื่น 5 GHz ซึ่งเป็นคลื่นความถี่ที่สูง ทำให้ความเร็วในการส่งข้อมูลสูงตามไปด้วยโดยมีความสามารถในการรับ – ส่งข้อมูลได้สูงสุดที่ 54 Mbps แต่ในช่วงแรกบางประเทศไม่อนุญาตให้ใช้งาน เนื่องจากคลื่นความถี่ 5 GHz นั้นไม่ใช่ความถี่สาธารณะ จำเป็นต้องได้รับอนุญาตเสียก่อน
มาตรฐาน IEEE 802.11b
มาตรฐาน IEEE 802.11b เป็นมาตรฐานที่ออกมาพร้อมกับ 802.11a เพียงแต่ใช้คลื่นความถี่ที่ 2.4 GHz ซึ่งเป็นคลื่นความถี่ที่ต่ำกว่า 802.11a จึงทำให้มีความเร็วในการรับ – ส่งข้อมูลที่ช้ากว่าโดยมีความสามารถในการรับ *ส่งสูงสุดที่ 11 Mbps เท่านั้น แต่เนื่องจากคลื่นความถี่ 2.4 GHz เป็นคลื่นความถี่สาธารณะ จึงสามารถนำไปใช้งานได้ในทุกๆ ประเทศ โดยไม่จำเป็นต้องขออนุมัติก่อนแต่เนื่องจากเป็นคลื่นความถี่สาธารณะ ดังนั้นอุปกรณ์ไร้สายอื่นๆ จึงใช้คลื่นความถี่นี้เช่นเดียวกันเลยทำให้เกิดสัญญาณรบกวนกันได้ง่ายมาก ทำให้ประสิทธิภาพของมาตรฐานนี้จึงถูกลดทอนด้วยปัจจัยจากสภาพแวดล้อม
มาตรฐาน IEEE 802.11g
มาตรฐาน IEEE 802.11g เป็นมาตรฐานที่ได้รับการพัฒนาขึ้นมาจาก 802.11b โดยยังคงใช้คลื่นความถี่ 2.4 GHz แต่มีความเร็วในการรับ – ส่งข้อมูลเพิ่มขึ้นอยู่ที่ระดับ 54 Mbps หรือเท่ากับมาตรฐาน 802.11a เพียงแต่ว่าความถี่ 2.4 GHz ยังคงเป็นคลื่นความถี่สาธารณะอยู่เหมือนเดิม ดังนั้นจึงยังมีปัญหาเรื่องของสัญญาณรบกวนจากอุปกรณ์ที่ใช้คลื่นความถี่เดียวกันอยู่ดี
มาตรฐาน IEEE 802.11N
มาตรฐาน IEEE 802.11N อาจจะยังไม่ถือว่าเป็นมาตรฐานจริงๆ เนื่องจากยังไม่ได้ประกาศออกมาอย่างเป็นทางการ เพราะยังคงอยู่ในช่วงระหว่างการพัฒนาอยู่ และใกล้เสร็จสมบูรณ์แล้ว ซึ่งมาตรฐาน 802.11N จะเป็นการพัฒนาแบบก้าวกระโดดด้วยการใช้เทคโนโลยีมากมายเข้ามาช่วยเพื่อเพิ่มความเร็วในการรับ – ส่งข้อมูลให้สูงขึ้น โดยจะมีความเร็วอยู่ที่ 300 Mbps หรือเร็วกว่าแลนแบบมีสายที่มาตรฐาน 100 BASE-TX นอกจากนี้ยังมีระยะพื้นที่ให้บริการกว้างขึ้น โดยเทคโนโลยีที่ 802.11N นำมาใช้ก็คือเทคโนโลยี MIMO ซึ่งเป็นการรับส่งข้อมูลจากเสาสัญญาณหลายๆ ต้นพร้อมๆ กัน ทำให้ได้ความเร็วสูงมากขึ้น และยังใช้คลื่นความถี่แบบ Dual Band คือทั้ง 2.4 GHz และ5 GHz ขึ้นอยู่กับอุปกรณ์ว่าออกแบบมาให้ทำงานกับคลื่นใดหรือทำงานกับทั้งสองคลื่นพร้อมๆ กันได้ ซึ่งทำให้บางประเทศที่ยังไม่ได้อนุมัติให้ใช้เครือข่ายไร้สายมาตรฐาน 802.11a อาจจะมีปัญหากับการใช้งานเครือข่ายไร้สายตามมาตรฐาน 802.11N
3. Wireless Access Protocol(WAP)
WAP หรือ Wireless Application Protocol คือมาตรฐานกำหนดวิธีในการเข้าถึงข้อมูล และบริการอินเตอร์เน็ตของอุปกรณ์ไร้สายเช่น โทรศัพท์มือถือและเครื่อง PDA วิธีการเข้าถึงข้อมูลของ WAP มีลักษณะการเข้าถึงอินเตอร์เน็ตของคอมพิวเตอร์ทั่วไป กล่าวคืออุปกรณ์พกพาจะมีซอฟต์แวร์บราวเซอร์ซึ่งจะเชื่อมต่อเข้ากับเกตเวย์ของ WAP ( ซอฟต์แวร์ ซึ่งติดตั้งอยู่ที่ฝั่งผู้ให้บริการระบบเครือข่ายซึ่งจะมีการส่งผ่านข้อมูลในเครือข่ายไร้สาย ) และร้องขอข้อมูลจากเว็บเซิร์ฟเวอร์บนอินเตอร์เน็ต ผ่านทาง URL ปรกติ โดยที่ข้อมูลสำหรับอุปกรณ์ไร้สายนี้สามารถเก็บไว้ในเว็บเซิร์ฟเวอร์เครื่องใดก็ได้บนอินเตอร์เน็ต ซึ่งข้อมูลเหล่านี้จะถูกออกแบบมาเพื่ออุปกรณ์พกพาขนาดเล็ก ที่มีหน้าจอขนาดเล็กและมีแบนวิดธ์ต่ำ โดยเฉพาะข้อมูลเหล่านี้จะเขียนขึ้นโดยภาษา เฉพาะของ WAP มีชื่อเรียกว่า WML ( Wireless Markup Language )
จุดเด่นของ WAP ประกอบด้วย
ไม่ต้องใช้วิธีการพิเศษเพื่อเข้าถึงข้อมูลและบริการ WAP แต่อย่างใด
ไม่ขึ้นกับระบบเครือข่าย WAP สามารถทำงานร่วมกับเครือข่ายชั้นนำอย่าง CDPD , CDMA , GSM , PDC , PMS , TDMA , FLEX ,ReFLEX , IDEN , DECT , DataTAC , Mobitex และเครือข่ายที่จะเกิดขึ้นในอนาคตอย่าง GPRS และ 3G ได้
โทรศัพท์มือถือกว่า 95 เปอร์เซ็นต์ จากผู้ผลิตชั้นนำในปัจจุบัน สามารถใช้งานกับ WAP ได้
เบราเซอร์ WAP สามารถทำงานบนระบบปฏิบัติการต่าง ๆ ไม่ว่าจะเป็น PaimOS , EPOC , Windows CE , FLEXOS , OS/ 9 , JavaOS และอื่น ๆ
4. Global Positioning System( GPS)
GPS (Global Positioning System) เป็นระบบเดียวในปัจจุบัน ที่สามารถ แสดงตำแหน่งที่อยู่ ที่แน่นอนว่าอยู่ ณ. ตำแหน่งใด บนพื้นโลกได้ทุกเวลา ทุกสภาพอากาศ ระบบนี้มีดาวเทียม 24 ดวง หมุนอยู่รอบโลก อยู่สูงขึ้นไป 11,000 nautical miles หรือประมาณ 20,200 kms. จากพื้นโลก ดาวเทียมเหล่านี้จะคอยส่งสัญญาณให้กับเครื่องลูกข่าย เพื่อบอกพิกัด ตำแหน่ง บนผิวโลกได้ตลอด 24 ชั่วโมง โดยในช่วงแรกการใช้งานนั้น GPS จะถูกจำกัดอยู่ในทางการทหาร แต่ต่อมาทางสหรัฐอเมริกาซึ่งเป็นผู้สร้างและดูแลเครือข่ายดาวเทียมเหล่านี้ได้มีการให้ใช้งานในวงกว้างขึ้น เช่น ใช้ในระบบการขนส่ง การสำรวจทรัพยากรธรรมชาติ การทำแผนที่ และในปัจจุบันในวงการท่องเที่ยวก็มีการนำ GPS มาใช้ในการเดินป่าอีกด้วย
หลักการของเครื่อง GPS คือการคำนวณระยะทางระหว่างดาวเทียมกับเครื่อง GPS ซึ่งจะต้องใช้ระยะทางจากดาวเทียมอย่างต่ำ 3 ดวง เพื่อให้ได้ตำแหน่งที่แน่นอน ซึ่งเมื่อเครื่อง GPS สามารถรับสัญญาณจากดาวเทียมได้ 3 ดวงขึ้นไปแล้ว จะมีคำนวณระยะทางระหว่างดาวเทียมถึงเครื่อง GPS โดยจากสูตรคำนวณทางฟิสิกส์คือ ความเร็ว X เวลา = ระยะทาง
โดยดาวเทียมทั้ง 3 ดวงจะส่งสัญญาณที่เหมือนกันมายังเครื่อง GPS โดยความเร็วแสง (186,000 ไมล์ต่อวินาที) แต่ระยะเวลาในการรับสัญญาณได้จากดาวเทียมแต่ละดวงนั้นจะไม่เท่ากัน เนื่องจากระยะทางไม่เท่ากัน เช่น
ดาวเทียม 1 : ระยะเวลาในการส่งสัญญาณจากดาวเทียมดวงแรกถึงเครื่อง GPS คือ 0.10 วินาที ระยะทางระหว่างดาวเทียมกับ GPS คือ 18,600 ไมล์ (186,000 ไมล์ต่อวินาที X 0.10 วินาที = 18,600 ไมล์) ฉะนั้นตำแหน่งปัจจุบันก็จะสามารถเป็นจุดใดก็ได้ในวงกลมที่มีรัศมี 18,600 ไมล์ ซึ่งจะเห็นว่าดาวเทียมเพียงดวงเดียวยังไม่สามารถบอกตำแหน่งที่แน่นอนได้
ดาวเทียม 2 : ระยะเวลาในการส่งสัญญาณจากดาวเทียมดวงแรกถึงเครื่อง GPS คือ 0.08 วินาที ระยะทางระหว่างดาวเทียมกับ GPS คือ 13,200 ไมล์ (186,000 ไมล์ต่อวินาที X 0.08 วินาที = 13,200 ไมล์) ฉะนั้นตำแหน่งปัจจุบันก็จะสามารถเป็นจุดใดก็ได้ในจุด Intersect ระหว่างวงกลมจากดาวเทียมดวงแรกกับดาวเทียมดวงที่ 2
ดาวเทียม 3 : ระยะเวลาในการส่งสัญญาณจากดาวเทียมดวงแรกถึงเครื่อง GPS คือ 0.06 วินาที ระยะทางระหว่างดาวเทียมกับ GPS คือ 11,160 ไมล์ (186,000 ไมล์ต่อวินาที X 0.06 วินาที = 11,160 ไมล์) ฉะนั้นตำแหน่งปัจจุบันก็จะสามารถเป็นจุดใดก็ได้ในจุด Intersect ระหว่างวงกลมจากดาวเทียมทั้ง 3 ดวง จะเห็นได้ว่าจะเหลือตำแหน่งอยู่ 2 จุดที่บริเวณวงกลมทั้ง 3 ตัดกันคือตำแหน่งที่อยู่ในอวกาศ ซึ่งแน่นอนว่าเราไม่สามารถไปอยู่ในอวกาศได้ตำแหน่งนี้จะถูกตัดทิ้งอัตโนมัติโดยเครื่อง GPS อีกตำแหน่งคือตำแหน่งบนพื้นโลกซึ่งเป็นตำแหน่งที่เรายืนถือเครื่อง GPS อยู่นั้นเอง ซึ่งความถูกต้องแม่นยำของตำแหน่งก็ขึ้นกับจำนวนดาวเทียมที่สามารถรับสัญญาณได้ในขณะนั้นหากมีมากกว่า 3 ดวงก็จะละเอียดมากขึ้น และก็ขึ้นกับเครื่อง GPS ด้วย หากเป็นเครื่องที่มีราคาแพง (ซึ่งมักใช้เฉพาะงาน) ก็จะมีความถูกต้องแม่นยำมากขึ้น
ข้อมูลตำแหน่งที่ได้มานั้น ยังสามารถใช้ร่วมกับโปรแกรมในเครื่อง GPS เพื่อบอกจุดบนแผนที่ และแสดงตำแหน่งของเราว่าอยู่จุดใดของแผนที่ได้อีกด้วย ทั้งนี้ก็ขึ้นกับข้อมูลแผนที่ที่ติดมากับเครื่องด้วยว่ามีความแม่นยำเพียงใด โดยแผนที่พื้นฐานจะไม่ได้ติดตั้งมากับเครื่อง GPS ทุกรุ่น ซึ่งอาจจะต้องซื้อแยกจากตัวเครื่อง
5.เทคโนโลยี 3G
3G เป็นเทคโนโลยีที่พัฒนาต่อเนื่องจากยุคที่ 2 และ 2.5 ซึ่งเป็นยุคที่มีการให้บริการระบบเสียง และ การส่งข้อมูลในขั้นต้น ทั้งยังมีข้อจำกัดอยู่มาก การพัฒนาของ 3G ทำให้เกิดการใช้บริการมัลติมีเดีย และ ส่งผ่านข้อมูลในระบบไร้สายด้วยอัตราความเร็วที่สูงขึ้นมีการเชื่อมต่อกับระบบเครือข่ายของ 3G ตลอดเวลาที่เราเปิดเครื่องโทรศัพท์ (always on) นั่นคือไม่จำเป็นต้องต่อโทรศัพท์เข้าเครือข่าย และ log-in ทุกครั้งเพื่อใช้บริการรับส่งข้อมูล
ซึ่งการเสียค่าบริการแบบนี้ จะเกิดขึ้นเมื่อมีการเรียกใช้ข้อมูลผ่านเครือข่ายเท่านั้น โดยจะต่างจากระบบทั่วไป ที่จะเสียค่าบริการตั้งแต่เราล็อกอินเข้าในระบบเครือข่าย อุปกรณ์สื่อสารไร้สายระบบ 3G สำหรับ 3G อุปกรณ์สื่อสารไม่ได้จำกัดอยู่เพียงแค่โทรศัพท์เท่านั้น แต่ยังปรากฏในรูปแบบของอุปกรณ์ สื่อสารอื่น เช่น Palmtop, Personal Digital Assistant (PDA), Laptop และ PC
ลักษณะการทำงาน
ลักษณะการทำงานของ 3G เมื่อเปรียบเทียบเทคโนโลยี 2G กับ 3G แล้ว 3G มีช่องสัญญาณความถี่ และ ความจุในการรับส่งข้อมูลที่มากกว่า ทำให้ประสิทธิภาพในการรับส่งข้อมูลแอพพลิเคชั่น รวมทั้งบริการระบบเสียงดีขึ้น พร้อมทั้งสามารถใช้ บริการมัลติมีเดียได้เต็มที่ และ สมบูรณ์แบบขึ้น
6.เทคโนโลยี 4G
เทคโนโลยี 4จี เป็นเครือข่ายไร้สายความเร็วสูงชนิดพิเศษ หรือเป็นเส้นทางด่วนสำหรับข้อมูลที่ไม่ต้องอาศัยการลากสายเคเบิล โดยระบบเครือข่ายใหม่นี้ จะสามารถใช้งานได้แบบไร้สาย รวมถึงคุณสมบัติการเชื่อมต่อเสมือนจริงในรูปแบบสามมิติ (three-dimensional) ระหว่างผู้ใช้โทรศัพท์ด้วยกันเอง นอกจากนั้น สถานีฐาน ซึ่งทำหน้าที่ในการส่งผ่านสัญญาณโทรศัพท์เคลื่อนที่จากเครื่องหนึ่งไปยังอีกเครื่องหนึ่ง และมีต้นทุนการติดตั้งที่แพงลิ่วในขณะนี้ จะมีให้เห็นกันอย่างแพร่หลายเช่นเดียวกับหลอดไฟฟ้าตามบ้านเลยทีเดียว สำหรับ 4จี จะสามารถส่งผ่านข้อมูลแบบไร้สายด้วยระดับความเร็วสูงที่เพิ่มขึ้นถึง 100 เมกะไบต์ต่อวินาที ซึ่งห่างจากความเร็วของชุดอุปกรณ์ที่ใช้กันอยู่ในปัจจุบัน ที่ระดับ 10 กิโลบิตต่อวินาที
จุดเด่นของเทคโนโลยีนี้
-สนับสนุนการให้บริการมัลติมีเดียในลักษณะที่สามารถโต้ตอบได้ เช่น อินเทอร์เน็ตไร้สาย และ เทเลคอนเฟอเรนซ์? เป็นต้น
-มีแบนด์วิทกว้างกว่า? สามารถรับ-ส่งข้อมูลด้วยอัตราความเร็ว (bit rate) สูงกว่า 3G
-ใช้งานได้ทั่วโลก (global mobility) และ service portability
-ค่าใช้จ่ายถูกลง
-คุ้มค่าต่อการลงทุนด้านโครงข่าย
5. รูปแบบของเครือข่าย (Network topology) มีกี่แบบ ให้นักเรียนวาดรูป พร้อมอธิบาย
โทโปโลยีของเครือข่าย (Network Topology) จะอธิบายถึงแผนผังการเชื่อมต่อคอมพิวเตอร์ตามลักษณะทางกายภาพ (Physical Topology) หรือทางตรรกะ (Logical Topology) ซึ่งจะแสดงถึงตำแหน่งของคอมพิวเตอร์และอุปกรณ์เครือข่ายอื่นๆ และเส้นทางการเชื่อมต่อของอุปกรณ์เหล่านี้โทโปโลยีของเครือข่ายอาจจะมีผลต่อสมรรถนะของเครือข่ายได้ การเลือกโทโปโลยีอาจมีผลต่อ
- ประเภทของอุปกรณ์ที่ใช้ในเครือข่าย
- สมรรถนะของอุปกรณ์เหล่านั้น
- ความสามารถในการขยายของเครือข่าย
- วิธีการดูแลและจัดการเครือข่าย
การเชื่อมต่อคอมพิวเตอร์เป็นเครือข่ายนั้นไม่ใช่แค่การใช้สายสัญญาณเชื่อมเข้าที่เน็ตเวิร์คการ์ดของแต่ละเครื่องเท่านั้น โทโปโลยีที่ใช้ต้องสัมพันธ์กับสายสัญญาณ เน็ตเวิร์คการ์ดระบบปฏิบัติการเครือข่าย และอุปกรณ์เครือข่ายอื่นๆที่จะเชื่อมกันเป็นเครือข่าย ทุกเครือข่ายต้องประกอบด้วยโทโปโลยีใดโทโปโลยีหนึ่งต่อไปนี้
1. โทโปโลยีแบบบัส (Bus Topology)
บางทีก็เรียกว่า “Linear bus” เพราะมีการเชื่อมต่อแบบเส้นตรงซึ่งเป็นลักษณะการเชื่อมต่อที่ง่ายที่สุด และเป็นโทโปโลยีที่นิยมกันมากที่สุด
แสดงการเชื่อมต่อแบบบัส ซึ่งการเชื่อมต่อแบบนี้จะใช้สายสัญญาณเพียงเส้นเดียวเชื่อมต่อคอมพิวเตอร์ทุกๆเครื่องเข้าด้วยกัน
การเชื่คอมพิวเตอร์ที่เชื่อมต่อเข้ากับสายสัญญาณร่วมหรือบัส จะสื่อสารกันโดยใช้ที่อยู่ ซึ่งคอมพิวเตอร์แต่ละเครื่องจะมีที่อยู่ที่ไม่ซ้ำกัน ในการส่งสัญญาณในสายที่แชร์กันนี้จำเป็นที่ต้องเข้าใจหลักการต่อไปนี้
- ลักษณะการส่งข้อมูล การส่งข้อมูลบนเครือข่ายที่มีโทโปโลยีแบบบัสนั้นข้อมูลจะถูกส่งไปบนสายสัญญาณในรูปแบบของสัญญาณอิเล็กทรอนิกส์ ซึ่งสัญญาณนี้จะเดินทางไปถึงคอมพิวเตอร์ทุกเครื่องที่เชื่อมต่อเข้ากับลื่อกลางหรือบัส
ดังนั้นเมื่อคอมพิวเตอร์เครื่องเดียวเท่านั้นที่ส่งข้อมูลได้ในเวลาใดเวลาหนึ่ง รูปที่ 2.28 แสดงการส่งข้อมูลจากเครื่อง D ไปยังเครื่อง B จะเห็นได้ว่าสัญญาณข้อมูลจะถูกส่งออกไปในรูปสัญญาณไฟฟ้าบนสายสัญญาณคอมพิวเตอร์ทุกเครื่องที่พ่วงต่อเข้ากับสายสัญญาณจี้จะได้ รับสัญญาณทุกเครื่อง แต่เฉพาะเครื่อง B เท่านั้นที่จะนำข้อมูลไป”พรเซสส์และใช้ต่อไป เนื่องจากเครื่อง B เท่านั้นที่มีที่อยู่ตรงกับที่อยู่ในข้อมูลที่ส่ง
แสดงการส่งข้อมูลจาก D ไป B บนบัส
เนื่องจากมีคอมพิวเตอร์เพียงเครื่องเดียวเท่านั้นที่จะสามารถส่งข้อมูลได้ในเวลาหนึ่ง ดังนั้นจำนวนคอมพิวเตอร์ที่พ่วงต่อเข้ากับสื่อกลางจะมีผลต่อประสิทธิภาพของเครือข่าย เพราะยิ่งจำนวนคอมพิวเตอร์มากเท่าไร ยิ่งทำให้คอมพิวเตอร์ต้องรอนานเพื่อที่จะส่งข้อมูล ซึ่งอาจมีผลทำให้เครือข่ายช้ามากขึ้น และยังไม่มีวิธีการที่เป็นมาตรฐานในการวัดว่าจำนวนคอมพิวเตอร์ที่เชื่อมต่อกันเข้ากับเครือข่ายนั้นมีผลกระทบต่อประสิทธิภาพของเครือข่ายอย่างไร ปัจจัยที่จะทำให้ประสิทธิภาพของเครือข่ายลดลงนั้นก็ไม่ใช่เฉพาะจำนวนคอมพิวเตอร์อย่างเดียว สิ่งต่อไปนี้เป็นปัจจัยอื่นๆ ที่อาจมีผลต่อประสิทธิภาพของเครือข่ายได้
- ประสิทธิภาพของฮาร์ดแวร์ของคอมพิวเตอร์ในเครือข่าย
- จำนวนของโปรแกรมที่กำลังรันบนเครื่องคอมพิวเตอร์
- ชนิดของแอพพลิเคชันที่ใช่เครือข่าย
- ประสิทธิภาพของสายสัญญาณที่ใช้
- ระยะห่างระหว่างคอมพิวเตอร์ในเครือข่าย
ในขณะใดขณะหนึ่งคอมพิวเตอร์ที่เชื่อมต่อเข้ากับเครือข่ายก็จะถูกเช็คดูว่ามีข้อมูลส่งมาถึงตัวเองหรือไม่ หรือไม่ก็กำลังจะส่งข้อมูล เนื่องจากคอมพิวเตอร์แต่ละเครื่องไม่มีหน้าที่ในการส่งข้อมูลได้ ดังนั้นเมื่อคอมพิวเตอร์เครื่องใดเครื่องหนึ่งจะหยุดทำงานก็จะไม่ทำให้เครือข่ายล่มได้ ตัวเทอร์มิเนเตอร์ (Terminator) จะทำหน้าที่ดูดกลืนสัญญาณเพื่อไม่ให้สะท้อนกลับและจะถูกติดไว้ที่ปลายสายสัญญาณการดูดกลืนสัญญาณนี้จะทำให้สายสัญญาณว่าง และพร้อมสำหรับการส่งข้อมูลอีกที่ปลายทั้งสองข้างของสายสัญญาณ จะต้องเสียบเข้ากับสิ่งใดสิ่งหนึ่ง ตัวอย่าง เช่น เน็ตเวิร์ดการ์ด หรือตัวเชื่อมต่อ ที่ใช้ในการเชื่อมต่อสายสัญญาณให้มีระยะยาวขึ้นปลายที่ไม่ได้เสียบเข้ากับอุปกรณ์ใดๆจะต้องติดตัวเทอร์มิเนเตอร์เพื่อป้องกันการสะท้อนกลับของสัญญาณการรบกวนการสื่อสารของเครือข่ายเมื่อเกิดสายสัญญาณขาด ณ จุดใดจุดหนึ่ง หรือมีการถอดปลายสายออกจากเครื่องคอมพิวเตอร์ซึ่งทำให้สายสัญญาณ ณ จุดนั้นไม่มีตัวเทอร์มิเนเตอร์ อันเป็นเหตุให้สัญญาณสะท้อนกลับ ซึ่งจะไปรบกวนสัญญาณเดิม และทำให้ข้อมูลนั้นเสียไป สัญญาณนี้ก็จะสะท้อนกลับไปกลับมาซึ่งทำให้ไม่สามารถส่งข้อมูลใหม้ได้ นี่เป็นประเภทหนึ่งที่ทำให้เครือข่ายนี้ล่ม ซึ่งมีผลทำให้เครือข่ายไม่สามารถทำงานได้
2. โทโปโลยีแบบดวงดาว (Star Topology)
คอมพิวเตอร์แต่ละเครื่องจะเชี่อมต่อด้วยสายสัญญาณเข้ากับอุปกรณ์รวมศูนย์ที่เรียกว่า “ฮับ (Hub)” รูปที่ 2.29 แสดงการเชื่อมต่อเครือข่ายแบบโทโปโลยีแบบดวงดาว
โทโปโลยีแบบดวงดาว
การเชื่อมต่อในแบบนี้มีข้อดีคือ การรวมศูนย์เพื่อเป็นการบริหารทรัพยากร อย่างไรก็ตามการเชื่อมต่อแบบนี้จะสิ้นเปลืองสายสัญญาณมาก เนื่องจากเครื่องทุกเครื่องจะต้องใช้สายสัญญาณเชื่อมต่อเข้ากับฮับ และอีกอย่างหนึ่ง ถ้าหากอุปกรณ์ที่ทำหน้าที่เป็นศูนย์กลางรับส่งข้อมูลหยุดทำงาน ระบบเครือข่ายจะล่ม ทันที แต่อย่างน้อยก็รู้สาเหตุ ข้อดีอีกอย่างของโทโปโลยีแบบนี้คือ ถ้าสายสัญญาณขาด เฉพาะเครื่องที่ใช้สายสัญญาณนั้นเท่านั้นที่ไม่สามารถใช้เครือข่ายได้ ส่วนเครื่องอื่นๆยังใช้เครือข่ายได้เช่นเดิม เนื่องจากฮับจะทำหน้าที่เป็นตัวสิ้นสุดสัญญาณโดยอัตโนมัติเมื่อสายขาด การเชื่อมต่อแบบนี้จะเป็นที่นิยมมากในปัจจุบัน เนื่องมาจากอีเทอร์เน็ตซึ่งกลายมาเป็นมาตรฐานเครือข่ายแบบท้องถิ่น ซึ่งในปัจจุบันนั้น ก็จะใช้การเชื่อมต่อหรือโทโปโลยีแบบดวงดาว
3. โทโปโลยีแบบวงแหวน (Ring Topology)
โทโปโลยีแบบวงแหวนนี้จะใช้สายสัญญาณเชื่อมต่อคอมพิวเตอร์เป็นห่วงหรือเป็นวงแหวน การเชื่อมต่อแบบนี้สัญญาณจะเดินทางเป็นวงกลมในทิศทางเดียว และจะวิ่งผ่านคอมพิวเตอร์แต่ละเครื่อง ซึ่งจะทำหน้าที่ทวนสัญญาณไปในตัวแล้วผ่านไปเครื่องถัดไป รูปที่ 2.30 เป็นการเชื่อมแบบโทโปโลยีแบบวงแหวนของคอมพิวเตอร์ 4 เครื่อง ถ้าคอมพิวเตอร์เครื่องใดเครื่องหนึ่งหยุดทำงานก็จะทำให้ระบบเครือข่ายล่มเช่นกัน
โทโปโลยีแบบวงแหวน
4. โทโปโลยีแบบเมซ (Mesh Topology)
คือ การเชื่อมต่อคอมพิวเตอร์แบบสมบูรณ์ กล่าวคือ คอมพิวเตอร์ทุกเครื่องในเครือข่ายจะเชื่อมต่อถึงกันหมดโดยใช้สายสัญญาณทุกการเชื่อมต่อ วิธีการนี้จะเป็นการสำรองเส้นทางเดินของข้อมูลได้เป็นอย่างดี
6. จงอธิบายเกี่ยวกับเครือข่าย LAN
ระบบเครือข่ายที่มีขนาดใหญ่กว่าเครือข่ายท้องถิ่น แต่อาจเชื่อมต่อกันด้วยระบบการสื่อสารสำหรับสาขาหลาย ๆ แห่งที่อยู่ภายในเขตเมืองเดียวกันหรือหลายเขตเมืองที่อยู่ใกล้กัน 0ระยะทางประมาณ 10 กิโลเมตร เช่นการให้บริการทั้งของรัฐและเอกชน อาจเป็นบริการภายใน หน่วยงานหรือเป็นบริการสาธารณะก็ได้ รวมถึงการให้บริการระบบโทรทัศน์ทางสาย (Cable television) เช่น บริษัท UBC ซึ่งเป็นระบบที่มีสายเคเบิลเพียงหนึ่งหรือสองเส้นโดยไม่มีอุปกรณ์สลับช่องสื่อสาร (switching element) ทำหน้าที่เก็บกักสัญญาณหรือปล่อยสัญญาณออกไปสู่ระบบอื่น มาตรฐานของระบบ MAN คือ IEEE 802.6 หรือเรียกว่า DQDB (Distributed Queue Dual Bus)
ตัวอย่างการใช้งานจริง เช่น ภายในมหาวิทยาลัยหรือในสถานศึกษาจะมีระบบแมนเพื่อเชื่อมต่อระบบแลนของแต่ละคณะวิชาเข้าด้วยกันเป็นเครือข่ายเดียวกันในวงกว้าง เทคโนโลยีที่ใช้ในเครือข่ายแมนได้แก่ ATM, FDDI และ SMDS ระบบเครือข่ายแมนที่จะเกิดในอนาคตอันใกล้ คือระบบที่จะเชื่อมต่อคอมพิวเตอร์ภายในเมืองเข้าด้วยกันโดยผ่านเทคโนโลยี Wi-Max
เป็นกลุ่มของเครือข่าย LAN ที่นำมาเชื่อมต่อกันเป็นวงที่ใหญ่ขึ้นภายในพื้นที่ใกล้เคียงกัน ซึ่งออกแบบมาเพื่อใช้งานให้ครอบคลุมเมืองทั้งเมือง ซึ่งอาจเป็นเครือข่ายเดียวกัน เช่น เครือข่ายเคเบิลทีวี หรืออาจเป็นการรวมเครือข่ายกันของเครือข่าย LAN หลาย ๆ เครือข่ายเข้าด้วยกัน (ไม่ปรากฏชื่อผู้แต่ง, 2010)
สามารถประยุกต์ใช้ในงานด้านธุรกิจได้ (Business Applicability)
องค์กรธุรกิจ มีการเชื่อมโยงเครือข่ายคอมพิวเตอร์ เพื่อประโยชน์ทางธุรกิจ เช่น เครือข่ายของธุรกิจธนาคาร ธุรกิจการบิน ธุรกิจประกันภัย ธุรกิจการท่องเที่ยว ธุรกิจหลักทรัพย์
สามารถดาเนินธุรกิจได้อย่างรวดเร็วตอบสนองความพึงพอใจให้แก่ลูกค้าในปัจจุบัน เริ่มมีการใช้ประโยชน์จากเครือข่าย Internet เพื่อทาธุรกิจกันแล้ว เช่น การสั่งซื้อสินค้า การจ่ายเงินผ่านระบบธนาคาร เป็นต้น
การเชื่อมต่อเครือข่ายคอมพิวเตอร์ และการจัดการเครือข่าย ต้องใช้เทคโนโลยีที่ยุ่งยากซับซ้อน ต้องอาศัยผู้ที่มีความรู้ความชำนาญ และมีประสบการณ์สูง จึงต้องใช้งบประมาณ การเริ่มต้นลงทุนสูงมาก อีกทั้งเทคโนโลยีของเครือข่ายคอมพิวเตอร์ เปลี่ยนแปลงไปเร็วมาก จาเป็นต้องมีงบประมาณ เพื่อปรับปรุงระบบให้ทันสมัยอยู่เสมอ ขาดแคลนซอฟต์แวร์ประยุกต์
ระบบเครือข่ายปัจจุบัน ยังขาดแคลนซอฟต์แวร์ประยุกต์ ด้านต่าง ๆ ทางานภายใต้สภาพแวดล้อม แบบเครือข่ายอยู่มาก เพราะการพัฒนา ต้องใช้ความรู้ความชำนาญสูง ต้องใช้เวลาในการพัฒนา จึงจะสามารถสร้างซอฟต์แวร์ประยุกต์ใช้งานด้านต่าง ๆ ได้
ไม่มีความคิดเห็น:
แสดงความคิดเห็น